You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
568 lines
24 KiB
568 lines
24 KiB
""" |
|
Author:陆绍超 |
|
Project name:swDLiner |
|
Created on 2024/05/07 下午1:20 |
|
""" |
|
|
|
import os |
|
import pandas as pd |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import Dataset, DataLoader |
|
from TCN import TemporalConvNet |
|
|
|
import json |
|
import tornado.web |
|
from tornado.escape import json_decode |
|
|
|
from tornado.log import LogFormatter |
|
import logging |
|
|
|
from datetime import datetime |
|
|
|
|
|
class NormalizedScaler: |
|
def __init__(self): |
|
self.min_value = 0. |
|
self.max_value = 1.0 |
|
self.target_column_indices = None |
|
|
|
def fit(self, data): |
|
self.min_value = data.min(0) |
|
self.max_value = data.max(0) |
|
# 计算最小值和最大值 |
|
self.maxmin_zeros = ((self.max_value - self.min_value) <= 1e-2) |
|
|
|
# print(self.maxmin_zeros) |
|
|
|
def transform(self, data): |
|
max_value = torch.from_numpy(self.max_value).type_as(data).to(data.device) if torch.is_tensor( |
|
data) else self.max_value |
|
min_value = torch.from_numpy(self.min_value).type_as(data).to(data.device) if torch.is_tensor( |
|
data) else self.min_value |
|
|
|
if any(self.maxmin_zeros): |
|
normalized_data = torch.zeros_like(data) if torch.is_tensor(data) else np.zeros_like(data) |
|
# 对每一列进行归一化,除非该列的最大值和最小值相等 |
|
for col in range(data.shape[1]): |
|
if not self.maxmin_zeros[col]: |
|
normalized_data[:, col] = (data[:, col] - min_value[col]) / (max_value[col] - min_value[col]) |
|
else: |
|
normalized_data = (data - min_value) / (max_value - min_value) |
|
|
|
return normalized_data |
|
|
|
def y_transform(self, data): |
|
max_value = torch.from_numpy(self.max_value[self.target_column_indices]).type_as(data).to( |
|
data.device) if torch.is_tensor( |
|
data) else self.max_value[self.target_column_indices] |
|
min_value = torch.from_numpy(self.min_value[self.target_column_indices]).type_as(data).to( |
|
data.device) if torch.is_tensor( |
|
data) else self.min_value[self.target_column_indices] |
|
|
|
maxmin_zeros = self.maxmin_zeros[self.target_column_indices] |
|
|
|
if any(self.maxmin_zeros): |
|
normalized_data = torch.zeros_like(data) if torch.is_tensor(data) else np.zeros_like(data) |
|
# 对每一列进行归一化,除非该列的最大值和最小值相等 |
|
for col in range(data.shape[1]): |
|
if not maxmin_zeros[col]: |
|
normalized_data[:, col] = (data[:, col] - min_value[col]) / (max_value[col] - min_value[col]) |
|
|
|
else: |
|
normalized_data = (data - min_value) / (max_value - min_value) |
|
|
|
return normalized_data |
|
|
|
def inverse_transform(self, data): |
|
max_value = torch.from_numpy(self.max_value[self.target_column_indices]).type_as(data).to( |
|
data.device) if torch.is_tensor( |
|
data) else self.max_value[self.target_column_indices] |
|
min_value = torch.from_numpy(self.min_value[self.target_column_indices]).type_as(data).to( |
|
data.device) if torch.is_tensor( |
|
data) else self.min_value[self.target_column_indices] |
|
return (data * (max_value - min_value)) + min_value |
|
|
|
|
|
class Dataset_GUISANLI_minute(Dataset): |
|
def __init__(self, size=None, target=None, column_order=None, scale=True): |
|
if target is None: |
|
self.target = ['Do', 'outCod', 'outNH3N', 'outPh', 'outTN', 'outTP'] |
|
else: |
|
self.target = target |
|
if column_order is None: |
|
# 列名列表,按照这个顺序排列 |
|
self.column_order = ['Do', 'Do1', 'Do2', 'inCod', 'inFlow', 'inNH3N', 'inPh', |
|
'outCod', 'outFlow', 'outFlowNow', 'outNH3N', 'outPh', |
|
'outTN', 'outTP', 'yw_bz', 'yw_mc1', 'yw_mc2', 'yw_tj2'] |
|
else: |
|
self.column_order = column_order |
|
|
|
if size is None: |
|
self.seq_len = 120 |
|
self.pred_len = 60 |
|
else: |
|
self.seq_len = size[0] |
|
self.pred_len = size[1] |
|
|
|
self.scale = scale |
|
self.scaler = NormalizedScaler() |
|
self.df_raw = None |
|
|
|
def read_data(self, df_raw): |
|
|
|
self.df_raw = df_raw |
|
''' |
|
df_raw.columns: ['date', ...(other features), target feature] |
|
''' |
|
|
|
if not all(column in df_raw.columns for column in self.column_order): |
|
print(f"DataFrame must contain columns: {self.column_order}") |
|
# 使用reindex方法按照列名列表对列进行排列 |
|
df_data = df_raw[self.column_order] |
|
self.data_x = df_data |
|
self.data_y = df_data |
|
if self.target: |
|
self.data_y = self.data_y[self.target] |
|
if self.scale: |
|
# 获取列名对应的列索引列表,给反标准化做准备 |
|
column_indices_1 = [self.data_x.columns.get_loc(col) for col in self.target] |
|
self.scaler.target_column_indices = column_indices_1 |
|
|
|
def __getitem__(self, index): |
|
s_begin = index |
|
s_end = s_begin + self.seq_len |
|
r_begin = s_end |
|
r_end = r_begin + self.pred_len |
|
seq_x = self.data_x[s_begin:s_end] |
|
seq_y = self.data_y[r_begin:r_end] |
|
|
|
if self.scale: |
|
self.scaler.fit(seq_x.values) |
|
x_data = self.scaler.transform(seq_x.values) |
|
y_data = self.scaler.y_transform(seq_y.values) |
|
|
|
return torch.from_numpy(x_data).to(torch.float32), torch.from_numpy(y_data).to(torch.float32) |
|
|
|
def __len__(self): |
|
return len(self.data_x) - self.seq_len - self.pred_len + 1 |
|
|
|
def inverse_transform(self, data): |
|
return self.scaler.inverse_transform(data) |
|
|
|
|
|
class Pred_GUISANLI_minute(): |
|
def __init__(self, size=None, target=None, column_order=None, scale=True, sn=None): |
|
if column_order is None: |
|
self.column_order = ['Do', 'Do1', 'Do2', 'inCod', 'inFlow', 'inNH3N', 'inPh', |
|
'outCod', 'outFlow', 'outFlowNow', 'outNH3N', 'outPh', |
|
'outTN', 'outTP', 'yw_bz', 'yw_mc1', 'yw_mc2', 'yw_tj2'] |
|
else: |
|
self.column_order = column_order |
|
if target is None: |
|
self.target = ['Do', 'outCod', 'outNH3N', 'outPh', 'outTN', 'outTP'] # 6 |
|
else: |
|
self.target = target |
|
if size is None: |
|
self.seq_len = 120 |
|
self.pred_len = 60 |
|
else: |
|
self.seq_len = size[0] |
|
self.pred_len = size[1] |
|
|
|
self.scale = scale |
|
self.scaler = NormalizedScaler() |
|
self.sn = sn |
|
self.df_raw = None |
|
|
|
def get_df_raw(self, df_raw): |
|
self.df_raw = df_raw |
|
''' |
|
df_raw.columns: ['date', ...(other features), target feature] |
|
''' |
|
# 列名列表,按照这个顺序排列 |
|
if not all(column in self.df_raw.columns for column in self.column_order): |
|
print(f"DataFrame must contain columns: {self.column_order}") |
|
|
|
def __getitem__(self, index): |
|
|
|
self.data_x = self.df_raw[self.column_order] # 预测数据 |
|
self.data_date = self.df_raw['date'] # 时间数据 |
|
if self.scale: |
|
# 获取列名对应的列索引列表,给反标准化做准备 |
|
column_indices_1 = [self.data_x.columns.get_loc(col) for col in self.target] |
|
self.scaler.target_column_indices = column_indices_1 |
|
# 使用reindex方法按照列名列表对列进行排列 |
|
s_begin = len(self.data_x) - self.seq_len - index |
|
s_end = s_begin + self.seq_len |
|
seq_date = self.data_date[s_begin:s_end] |
|
seq_x = self.data_x[s_begin:s_end] |
|
|
|
if self.scale: |
|
# 测试是否为数据的部分,已经为测试标签联合测试 |
|
# print('==start' * 20) |
|
# print(seq_x) |
|
# print('==end' * 20) |
|
self.scaler.fit(seq_x.values) |
|
x_data = self.scaler.transform(seq_x.values) |
|
return seq_date.values, torch.from_numpy(x_data).to(torch.float32) |
|
|
|
def __len__(self): |
|
if self.df_raw is None: |
|
return 0 |
|
elif (len(self.df_raw) - self.seq_len + 1) < 0: |
|
return 0 |
|
else: |
|
return len(self.df_raw) - self.seq_len + 1 |
|
|
|
def inverse_transform(self, data): |
|
return self.scaler.inverse_transform(data) |
|
|
|
|
|
def load_model(weights_path, num_inputs=32, num_outputs=6): |
|
predict_model = TemporalConvNet(seq_len=120, |
|
pred_len=60, |
|
num_inputs=num_inputs, |
|
num_channels=[64, 128, 256, 128, 64, 32, num_outputs]) # 加载模型 |
|
if os.path.exists(weights_path): |
|
model_weights = torch.load(weights_path) # 读取权重文件 |
|
predict_model.load_state_dict(model_weights) # 模型加载权重 |
|
else: |
|
print("模型权重不存在") |
|
return predict_model |
|
|
|
|
|
def config_init(): |
|
# 从文件中读取JSON并转换回字典 |
|
config_load = { |
|
'20210225GUISANLI': {'model': './Upload/GUIGWULI/TCN_weights_GUIGWULIm1.pth', |
|
'data_loader': '20210225GUISANLI', |
|
'SN': '20210225GUISANLI', |
|
'target': ['Do', 'outCod', 'outNH3N', 'outPh', 'outTN', 'outTP'], |
|
'columns': ['Do', 'Do1', 'Do2', 'inCod', 'inFlowNow', 'inNH3N', 'inPh', 'outCod', |
|
'outFlowNow', 'outNH3N', 'outPh', 'outTN', 'outTP', 'yw_bz', 'yw_mc1', |
|
'yw_mc2', 'yw_tj2'], |
|
}, |
|
'20210207GUIGWULI': {'model': './Upload/GUIGWULI/TCN_weights_GUIGWULIm1.pth', |
|
'data_loader': '20210207GUIGWULI', |
|
'SN': '20210207GUIGWULI', |
|
'target': ['Do', 'outCod', 'outNH3N', 'outPh', 'outTN', 'outTP'], |
|
'columns': ['Do', 'inCod', 'inFlowNow', 'inNH3N', 'inPh', 'outCod', 'outFlowNow', |
|
'outNH3N', 'outPh', 'outTN', 'outTP', 'yw_bz', 'yw_mc1', 'yw_mc2', 'yw_tj1'], |
|
}, |
|
'20210309ZHANGMUZ': {'model': './Upload/GUIGWULI/TCN_weights_GUIGWULIm1.pth', |
|
'data_loader': '20210309ZHANGMUZ', |
|
'SN': '20210309ZHANGMUZ', |
|
'target': ['outCOD', 'outNH3N', 'outPH', 'outTN', 'outTP'], |
|
'columns': ['inCOD', 'inFlowNow', 'inNH3N', 'inPH', 'outCOD', 'outFlowNow', 'outNH3N', |
|
'outPH', 'outTN', 'outTP', 'yw_bz', 'yw_mc1', 'yw_mc2', 'yw_mc3', 'yw_mc4', |
|
'yw_tj1', 'yw_tj2', 'yw_tj3', 'yw_tj4'] |
|
}, |
|
} |
|
# with open('config', 'r', encoding='utf-8') as f: |
|
# config_load = json.load(f) |
|
# config_load = dict(config_load) |
|
configs = {} |
|
for key, val in config_load.items(): |
|
config_item = {} |
|
for k, v in val.items(): |
|
if k == 'model': |
|
config_item[k] = load_model(weights_path=v, |
|
num_inputs=len(val.get('columns', [])), |
|
num_outputs=len(val.get('target', []))) |
|
elif k == 'data_loader': |
|
config_item[k] = Pred_GUISANLI_minute(sn=v, |
|
target=val.get('target', None), |
|
column_order=val.get('columns', None)) |
|
elif k == 'SN': |
|
config_item[k] = v |
|
elif k == 'target': |
|
config_item[k] = v |
|
elif k == 'columns': |
|
config_item[k] = v |
|
else: |
|
raise ValueError("配置错误") |
|
|
|
configs[key] = config_item |
|
return configs |
|
|
|
|
|
configs = config_init() |
|
|
|
|
|
def pseudo_model_predict(model, pred_data_loader): |
|
# 尝试从pred_data_loader加载预测数据 |
|
if len(pred_data_loader) > 0: |
|
# 假设pred_data_loader是一个列表,并且至少有一个元素 |
|
date, predict_data = pred_data_loader[0] |
|
else: |
|
return {} |
|
try: |
|
# 将预测数据转换为一个批次,在PyTorch中,每个批次至少需要有一个样本 |
|
predict_data = torch.unsqueeze(predict_data, 0) # 第0维加入batch维度 |
|
# 确保模型处于评估模式 |
|
model.eval() |
|
# 使用模型进行推理 |
|
predict_result = model(predict_data) |
|
# 删除batch维度 |
|
predict_result = torch.squeeze(predict_result, 0) |
|
# 对预测结果进行后处理 |
|
predict_result = pred_data_loader.inverse_transform(predict_result) |
|
# 确保预测结果是一个numpy数组 |
|
predict_result = predict_result.detach().numpy() |
|
# 创建一个时间序列索引 |
|
start_time = pd.Timestamp(date[-1]) |
|
date = pd.date_range(start=start_time + pd.Timedelta(minutes=1), periods=len(predict_result), freq='T') |
|
# 创建一个DataFrame,将时间序列索引作为列 |
|
df = pd.DataFrame(date, columns=['date']) |
|
# 标题行列表 |
|
target_headers = ['outCod', 'outTN', 'outNH3N', 'outTP', 'outPh', 'Do'] |
|
# 将时间序列索引设置为DataFrame的索引 |
|
df[target_headers] = predict_result |
|
print(df) |
|
# 将DataFrame转换为JSON格式的字符串 |
|
json_str = df.to_json(orient='records') |
|
print(json_str) |
|
except Exception as e: # 使用异常捕获来处理可能出现的任何异常 |
|
# 记录错误信息 |
|
print(f"An error occurred: {e}") |
|
# 返回一个空的字典作为JSON字符串 |
|
json_str = {} |
|
|
|
return json_str |
|
|
|
|
|
# 模型预测请求 |
|
class PredictHandler(tornado.web.RequestHandler): |
|
def get(self, keyword): |
|
if keyword in configs.keys(): |
|
json_str = pseudo_model_predict(configs[keyword]['model'], configs[keyword]['data_loader']) |
|
# 构造响应数据 |
|
response = {"prediction": json_str} |
|
# 设置响应的Content-Type为application/json |
|
self.set_header("Content-Type", "application/json") |
|
# 将结果返回给客户端 |
|
self.write(json.dumps(response)) |
|
else: |
|
self.write("Unknown keyword.") |
|
|
|
|
|
# 模型上传请求 |
|
class UploadHandler(tornado.web.RequestHandler): |
|
def post(self): |
|
# 获取表单字段 |
|
group_name = self.get_body_argument('groupName') |
|
model_file = self.request.files['modelFile'][0] |
|
csv_file = self.request.files['csvTable'][0] |
|
# 创建组别目录 |
|
save_path = os.path.join('./Upload', group_name) |
|
if not os.path.exists(save_path): |
|
os.makedirs(save_path) |
|
|
|
# 保存模型文件 |
|
model_filename = model_file.filename |
|
model_path = os.path.join(save_path, model_filename) |
|
with open(model_path, 'wb') as f: |
|
f.write(model_file.body) |
|
# 保存CSV文件 |
|
csv_filename = csv_file.filename |
|
csv_path = os.path.join(save_path, csv_filename) |
|
with open(csv_path, 'wb') as f: |
|
f.write(csv_file.body) |
|
|
|
self.write(f'Files for group "{group_name}" have been uploaded and saved successfully.') |
|
|
|
|
|
async def train(data_set, predict_model, pth_save_name): |
|
print('模型训练开始') |
|
random_seed = 240510 # set a random seed for reproducibility |
|
np.random.seed(random_seed) |
|
torch.manual_seed(random_seed) |
|
# prep_dataloader 函数 将数据拆分成训练集与验证集。 并载入dataloader |
|
train_dataloader = DataLoader( |
|
data_set, |
|
batch_size=16, |
|
shuffle=True, |
|
num_workers=0, |
|
drop_last=False) |
|
|
|
loss_function = nn.MSELoss() # 采用MSE为回归的损失函数 |
|
optimizer = torch.optim.Adam(predict_model.parameters(), lr=0.0001) # 采用Adam优化器 |
|
epochs = 4 # 迭代epoch次数 |
|
|
|
train_epoch_loss = [] # 记录每个训练epoch的平均损失 |
|
for epoch in range(epochs): |
|
# train -------------------------------------------------------------------------------------------------- |
|
predict_model.train() |
|
train_step_loss = [] |
|
for step, data in enumerate(train_dataloader): |
|
sample, label = data |
|
optimizer.zero_grad() # 清空梯度,pytorch默认梯度会保留累加 |
|
pre = predict_model(sample) |
|
loss = loss_function(pre, label) |
|
loss.backward() |
|
optimizer.step() |
|
train_step_loss.append(loss.item()) |
|
train_average_loss = sum(train_step_loss) / len(train_step_loss) |
|
train_epoch_loss.append(train_average_loss) |
|
print(f"[在第{epoch + 1:}个epoch,训练的]: train_epoch_loss = {train_average_loss:.4f}") |
|
torch.save(predict_model.state_dict(), pth_save_name) |
|
print('模型训练完成') |
|
return predict_model |
|
|
|
|
|
# ========================================== |
|
# 定时获取数据 |
|
# ========================================== |
|
|
|
http_client = tornado.httpclient.AsyncHTTPClient() |
|
|
|
|
|
async def generate_data(): |
|
global http_client |
|
global configs |
|
try: |
|
for k1, v1 in configs.items(): |
|
SN = v1['SN'] |
|
# 请求头 |
|
headers = { |
|
'Authority': 'iot.gxghzh.com:8888', |
|
'Method': 'POST', |
|
'Path': '/exeCmd', |
|
'Scheme': 'https', |
|
'Accept': 'application/json, text/plain, */*', |
|
'Accept-Encoding': 'gzip, deflate, br, zstd', |
|
'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6', |
|
'Cmd': 'GetAllConfigs', |
|
'Content-Length': '2', |
|
'Content-Type': 'application/json;charset=UTF-8', |
|
'Origin': 'http://127.0.0.1:6810', |
|
'Priority': 'u=1, i', |
|
'Referer': 'http://127.0.0.1:6810/', |
|
'Sec-Ch-Ua': '"Chromium";v="124", "Microsoft Edge";v="124", "Not-A.Brand";v="99"', |
|
'Sec-Ch-Ua-Mobile': '?0', |
|
'Sec-Ch-Ua-Platform': '"Windows"', |
|
'Sec-Fetch-Dest': 'empty', |
|
'Sec-Fetch-Mode': 'cors', |
|
'Sec-Fetch-Site': 'cross-site', |
|
'Sn': SN, |
|
'Token': '45a73a59b3d23545', |
|
'Uid': '0', |
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' |
|
'Chrome/124.0.0.0 ' |
|
'Safari/537.36 Edg/124.0.0.0 ' |
|
} |
|
|
|
# 构造POST请求的URL和参数 |
|
response = await http_client.fetch("https://iot.gxghzh.com:8888/exeCmd", method="POST", headers=headers, |
|
body=json.dumps({})) |
|
# 检查响应状态码 |
|
if response.code == 200: |
|
# 解析响应数据(假设是JSON格式) |
|
response_data = response.body.decode('utf-8') |
|
# 将字符串解析为 JSON 对象 |
|
response_data = json.loads(response_data) |
|
SwitchTerminals = response_data['Result']['SwitchTerminals'] |
|
AnalogTerminals = response_data['Result']['AnalogTerminals'] |
|
# 获取当前时间并格式化为字符串 |
|
current_time = datetime.now() |
|
item_dict = {'date': current_time} # 为数据添加现在的时间 |
|
item_key_list_1 = [] |
|
item_key_list_2 = [] |
|
for child in AnalogTerminals: |
|
key = child['key'] |
|
value = child['value'] |
|
item_dict[key] = value |
|
item_key_list_1.append(key) |
|
for child in SwitchTerminals: |
|
key = child['key'] |
|
value = child['value'] |
|
item_dict[key] = value |
|
item_key_list_2.append(key) |
|
|
|
if v1['data_loader'].df_raw is None: |
|
# 第一次创建df |
|
|
|
# 获取当前日期 |
|
current_date = datetime.now().strftime("%Y%m%d") |
|
# 构建文件名模式 |
|
file_pattern = f"./{current_date}_{SN}.csv" |
|
# 判断当前文件夹是否存在该文件 |
|
file_exists = os.path.exists(file_pattern) |
|
if file_exists: |
|
v1['data_loader'].get_df_raw(pd.read_csv(file_pattern, parse_dates=True)) |
|
else: |
|
item_key_list_1 = sorted(item_key_list_1) |
|
item_key_list_2 = sorted(item_key_list_2) |
|
sort_list = ['date'] + item_key_list_1 + item_key_list_2 |
|
print(sort_list, len(sort_list)) |
|
v1['data_loader'].get_df_raw(pd.DataFrame(columns=sort_list)) |
|
|
|
# 使用concat方法添加新行 |
|
v1['data_loader'].df_raw = pd.concat([v1['data_loader'].df_raw, pd.DataFrame([item_dict])], |
|
ignore_index=True) |
|
# json_str_GUISANLI = pseudo_model_predict(v1['model'], v1['data_loader']) |
|
print(f'请求成功,状态码:{response.code}') |
|
else: |
|
print(f'请求失败,状态码:{response.code}') |
|
|
|
print("============ 每隔一分钟展示df ====================") |
|
print(v1['data_loader'].df_raw.tail()) # 每隔一分钟展示df |
|
print(f"shape:{v1['data_loader'].df_raw.shape}") |
|
print("===============================================") |
|
|
|
# 保存到文件以防止 |
|
if len(v1['data_loader'].df_raw) % 10 == 0: |
|
# 获取当前日期 |
|
current_date = datetime.now().strftime("%Y%m%d") |
|
# 构建文件名模式 |
|
file_pattern = f"./{current_date}_{SN}.csv" |
|
|
|
data_set = Dataset_GUISANLI_minute(target=v1.get('target', None), column_order=v1.get('columns', None)) |
|
data_set.read_data(v1['data_loader'].df_raw) |
|
predict_model = v1['model'] |
|
configs[k1]['model'] = await train(data_set=data_set, |
|
predict_model=predict_model, |
|
pth_save_name=f"./{current_date}_{SN}_TCN.pth") |
|
|
|
v1['data_loader'].df_raw.to_csv(file_pattern, index=False) |
|
# df_new = v1['data_loader'].df_raw.iloc[-120:, :].copy() |
|
# del v1['data_loader'].df_raw |
|
# v1['data_loader'].df_raw = df_new |
|
# v1['data_loader'].df_raw.reset_index(drop=True, inplace=True) |
|
except tornado.httpclient.HTTPError as e: |
|
print("HTTP Error:", e) |
|
except Exception as e: |
|
print("Exception:", e) |
|
finally: |
|
http_client.close() |
|
|
|
|
|
# 创建Tornado应用 |
|
app = tornado.web.Application([ |
|
(r"/predict/(\w+)", PredictHandler), |
|
(r"/upload", UploadHandler), |
|
]) |
|
# 配置日志 |
|
# logger = logging.getLogger() |
|
# logger.setLevel(logging.INFO) |
|
# |
|
# formatter = LogFormatter( |
|
# fmt='%(color)s[%(asctime)s] %(levelname)s - %(message)s%(end_color)s', |
|
# datefmt='%Y-%m-%d %H:%M:%S' |
|
# ) |
|
# |
|
# # 设置日志文件 |
|
# file_handler = logging.FileHandler("tornado.log") |
|
# file_handler.setFormatter(formatter) |
|
# logger.addHandler(file_handler) |
|
|
|
if __name__ == "__main__": |
|
# 启动服务器 |
|
app.listen(8886) |
|
print("Server started on port 8886") |
|
# 每隔60秒调用一次generate_data函数 |
|
tornado.ioloop.PeriodicCallback(generate_data, 60000).start() |
|
tornado.ioloop.IOLoop.current().start()
|
|
|