You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

125 lines
5.0 KiB

10 months ago
"""
Author陆绍超
Project name:swDLiner_3
Created on 2024/05/10 上午11:45
"""
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
class Chomp1d(nn.Module):
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
"""
其实这就是一个裁剪的模块裁剪多出来的padding
"""
return x[:, :, :-self.chomp_size].contiguous()
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
"""
相当于一个Residual block
:param n_inputs: int, 输入通道数
:param n_outputs: int, 输出通道数
:param kernel_size: int, 卷积核尺寸
:param stride: int, 步长一般为1
:param dilation: int, 膨胀系数
:param padding: int, 填充系数
:param dropout: float, dropout比率
"""
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
# 经过conv1,输出的size其实是(Batch, input_channel, seq_len + padding)
self.chomp1 = Chomp1d(padding) # 裁剪掉多出来的padding部分,维持输出时间步为seq_len
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.chomp2 = Chomp1d(padding) # 裁剪掉多出来的padding部分,维持输出时间步为seq_len
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
self.conv2, self.chomp2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
self.init_weights()
def init_weights(self):
"""
参数初始化
:return:
"""
self.conv1.weight.data.normal_(0, 0.01)
self.conv2.weight.data.normal_(0, 0.01)
if self.downsample is not None:
self.downsample.weight.data.normal_(0, 0.01)
def forward(self, x):
"""
:param x: size of (Batch, input_channel, seq_len)
:return:
"""
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TemporalConvNet(nn.Module):
def __init__(self, seq_len, pred_len, num_inputs, num_channels, kernel_size=2, dropout=0.2):
"""
TCN目前paper给出的TCN结构很好的支持每个时刻为一个数的情况即sequence结构
对于每个时刻为一个向量这种一维结构勉强可以把向量拆成若干该时刻的输入通道
对于每个时刻为一个矩阵或更高维图像的情况就不太好办
:param num_inputs: int 输入通道数
:param num_channels: list每层的hidden_channel数例如[25,25,25,25]表示有4个隐层每层hidden_channel数为25
:param kernel_size: int, 卷积核尺寸
:param dropout: float, drop_out比率
"""
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i # 膨胀系数:1,2,4,8……
in_channels = num_inputs if i == 0 else num_channels[i - 1] # 确定每一层的输入通道数
out_channels = num_channels[i] # 确定每一层的输出通道数
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
padding=(kernel_size - 1) * dilation_size, dropout=dropout)]
self.network = nn.Sequential(*layers)
self.mlp = nn.Linear(seq_len, pred_len)
def forward(self, x):
"""
输入x的结构不同于RNN一般RNN的size为(Batch, seq_len, channels)或者(seq_len, Batch, channels)
这里把seq_len放在channels后面把所有时间步的数据拼起来当做Conv1d的输入尺寸实现卷积跨时间步的操作
很巧妙的设计
:param x: size of (Batch, seq_len,input_channel)
:return: size of (Batch, seq_len, output_channel)
"""
x = x.permute(0, 2, 1)
x = self.network(x)
x = self.mlp(x)
x = x.permute(0, 2, 1)
return x
if __name__ == "__main__":
import argparse
x = torch.randn([2, 120, 25])
model_net = TemporalConvNet(seq_len=120, pred_len=60,num_inputs=32, num_channels=[25, 30, 35, 35, 30, 25])
pred = model_net(x)
print(pred)
print(pred.size())